—— AD-A2g0
e I/II/I//II/IlflllII/!IIl//lIl/lll//l/I’I:/’II?s !

Lod
ION PAGE o et /C
e, including the time for reviewing inatructions. searching existing data sources gathering and mairtaining
m«wm-uuumbeouabndummwnwmmmmmw 10 Washingeon

Headquarters is Highway, Sulle 1204, Arington, VA 222024302, and 1o the Office of Information and Reguiatory Aftairs, Office of
Management aw —.
1. AGENCY USE ONLY (Leave Biank) 3 ~REPORT TYPE AND DATES COVERED

I Final: 04 Nov 92

4. TITLE AND SUBTITLE
Validation Summary Report: Tartan Inc., Tartan Ada VMS/C40 v4.2.1, DEC
VAXstation 4000/VMS (Host) to Texas Instruments TMS320C40 (Target),
92103011.11296

6. AUTHOR(S)
Wright-Patterson AFB, Dayton, OH
USA

$. FUNDING NUMBERS

m
Ada Validation Facility, Language Control Facility ASD/STEL
Bidg. 676, Rm 135

Wright-Patterson AFB, Dayton, OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

1ABG-VSR 113

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office

United States Department of Defense

Pentagon, Rm 3E114

Washington, D.C. 20301-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

e T T Y Y T YT T T .
12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

ACVC 1.11.

Tanan Inc., Tartan Ada VMS/C40 v4.2.1, DEC VAXstation 4000/VMS (Host) to Texas Instruments TMS320C40 (Target).

74. SUBJECT TERMS

OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

e BT T T T T Y T Yt T T TPV C
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

15. NUMBER OF PAGES

.

NSN 7540-01-280-550

Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Sid. 239-128

AVF Control)l Number: IABG-VSR 113

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 921030I1.11296
Tartan Inc.

Tartan Ada VMS/C40 vd.2.1
DEC VAXstation 4000/VMS Host
Texas Instruments THMS320C40 Target
(bare machine)

93-01433
\nllﬁllll

Prepared By:
IABG mbH, Abt. ITE
Einsteinstr. 20
W-8012 Ottobrunn
Germany

98 1 26 059

November 04, 1992

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on October 30, 1992.

Compiler Name and Version: Tartan Ada VMS/C40 v4.2.1

Host Computer System:Digital VAXstation 4000 Model 60
under VAX/VMS version 5.5

Target Computer System: Texas Instruments TMS320C40
Parallel Processing Development System
(bare machine)

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 92103011.11296 is
awarded to Tartan Inc. This certificate expires 24 months after ANSI approval
of ANSI/MIL-STD-181SB.

This report has been reviewed and is approved.

Lus od o L0

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
D-8012 Ottobrunn
Germany

lon Organization
omputer and Software Engineering Division
or Defense Analyses

Alexandria VA 22311 DTIC QUALITY (NGPECIED 8
MW Acaesssion Por
Ad4 Joint Program Office BYIS GRAAI &
Dr. John Solomond, Director DTIC TAB 0
Department of Defense Unannownced
Washington DC 20301 Justification __.___ ‘
By
Distribution/
Availability Codes
: vail and/or
Dist Special
R/\ L |

UNCLASSIFIED
Appendix A.
Declaration of Conformance
Customer: Tartan, Inc.
Certificate Awardee: Tartan, Inc.
Ada Validation Facility: IABG mbH
ACVC Version: 1.11
Ada Implementation:
Ada Compiler Name and Version: Tartan Ada VMS/C40 v4.2.1
Digital VAX ti 4000 Model 60
Host Computer System: un. e;aVAX[Vfigaveggion 5.5D €
T Inst ts TMS320C40

Target Computer System: Pgﬁggle?sPigggsing Development System

(bare machine)

Declaration:

I, the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A, ISO 8652-1987, FIPS 119 as tested in
this validation and documented in the Validation Summary Report.

Lee B. Ehrlichman Date
Tartan, Inc.
President and Chief Executive Officer

(Same) (Same)
Certificate Awardee Signature Date

Note: If the Customer and the Certificate Awardee are the same, only the customer
signature is needed.

A-1

UNCLASSIFIED

APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES. . . ¢ ¢ ¢ ¢ ¢ o o o o o o
ACVC TEST CLASSES . . . +« ¢ ¢ o o o o
DEFINITION OF TERMS « « « &
IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS « ¢« « o+ &
INAPPLICABLE TESTS. . . « « o « o o o
TEST MODIFICATIONS. . . « « o o« « &+ &
PROCESSING INFORMATION

TESTING ENVIRONMENT + . .

SUMMARY OF TEST RESULTS
TEST EXECUTION. . . ¢ « ¢ ¢ ¢ o o o &

MACRO PARAMETERS

COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

1-1
1-2
1-2
1-3

2-1
2-1
2-4

3~1
3-1
3-2

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92) against the Ada Standard [Ada83) using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro92]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89]).

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act” (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Lanquage,
ANSI/MIL-STD-181SA, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89) Ada Compjler Valjdatjon Capability User’s Gujde, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK_FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK_FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -~ for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consista of making the modifications described

in the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89])).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow

transformation of Ada programs into executable form and

execution thereof.

Th> means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
(ACVC) report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

INTRODUCTION
Fulfillment by a product, process or service of all
requirements specified.
An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and

conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity

" is realized or attainable on the Ada implementation for

which validation status is realized.

A computer system where Ada source programs are t+~ansformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial
or complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration {Pro92j.

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

The rationale for

withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is August 02, 1991.

E28005C
C35508M
C45114A
C46022A
B83022H
B85001L
CB7001A
BC3009B
CD2A23E
BD3006A
CD4024D
CD700SE
AD7206A
CE21071
CE3111cC
CE3607C

B28006C
C35508N
C45346A
B49008A
B83025B
C86001F
CB7001B
BD1B02B
CD2A32A
BD4008A
CD4031A
AD7006A
BD8002A
CE2117A
CE3116A
CE3607D

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for
Reasons for a test’s inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada Commentaries

a given Ada implementation.

C32203A
C35702a
C45612A
B49008B
B8302SD
C94021A
CB7004A
BD1BO6A
CD2A41A
CD4022A
CD40S1D
CD7006E
BD8004C
CE2117B
CE3118A
CE3812A

C34006D
C35702B
C45612B
A74006A
C83026A
c97116A
CCl223A
AD1BO8A
CD2A41E
CD4022D
CDS111A
AD7201A
CD9005A
CE2119B
CE3411B
CE3814A

and commonly referenced in the format AI-ddddd.

C355081
B41308B
C45612C
C74308A
B83026B
C98003B
BC1226A
BD2AO2A
CD2A87A
CD4024B
CD7004C
AD7201E
CD900SB
CE2205B
CE3412B
CE3902B

For this implementation, the
following tests were determined to be inapplicable for the reasons indicated;

references to Ada Commentaries are included as appropriate.

2-1

C35508J
C43004A
C45651A
B83022B
c83041Aa
BA2011A
CC1226B
CD2A21E
CD2B1S5C
CD4024C
ED7005D
CD7204B
CDA201E
CE2405A
CE3607B

IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations requiring more
digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C3S706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..2 (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..2 (21 tests)
C45524F..2 (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..2 (21 tests)

The following 21 tests check for the predefined type SHORT_INTEGER; for this
implementation, there is no such type:

C35404B B3610SC C45231B C45304B C45411B
C45412B C45502B C45503B C455048 C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B0OSD B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONG_INTEGER; for this
implementation, there is no such type:

C35404cC C45231C C45304cC C45411cC C45412C
c45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C €45632C B52004D
CS5BO7A B55B09C B86001W c86006C CD7101F

C35404D, C45231D, B86001X, CB86006E, and CD7101G check for a predefined integer
type with a name other than INTEGER, LONG_INTEGER, or SHORT_ INTEGER; for this
implementation, there is no such type.

C35713B, C43423B, B86001T, and C86006H check for the predefined type
SHORT_FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a name
other than FLOAT, LONG_FLOAT, or SHORT_ FLOAT; for this implementation, there is
no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range constraint
in a floating-point type declaration; for this implementation, that range
exceeds the range of safe numbers of the largest predefined floating-point type
and must be rejected. (See section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for types that
require a SYSTEM.MAX MANTISSA of 47 or greater; for this implementation,

MAX MANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses that
specify values for ’'SMALL that are not powers of two or ten; this
implementation does not support such values for ‘SMALL.

C45624A..B (2 tests) check that the proper exception is raised if

MACHINE OVERFLOWS is FALSE for floating point types and the results of various
floating-point operations lie outside the range of the base type; for this
implementation, MACHINE_OVERFLOWS is TRUE.

D64005G uses 17 levels of recursive procedure calls nesting; ‘this level of
nesting for procedure calls exceeds the capacity of the compiler.

B86001lY uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009A, CA2009C..D (2 tests), CA2009F, and BC3009C check whether a generic
unit can be instantijated before its body (and any of its subunits) is compiled;

2-2

- T

IMPLEMENTATION DEPENDENCIES

this implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit bodies
makes the instantiating units obsolete. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size for a
floating-point type; this implementation does not support such sizes.

CD2AS3A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten TYPE'SMALL; this implementation does not support
decimal ‘SMALLs. (See section 2.3.)

CD2A84A, CD2AB4E, CD2AB4I..J (2 tests), and CD2A840 use length clauses to
specify non-default sizes for access types; this implementation does not
support such sizes.

CD2B15B checks that STORAGE_ERROR is raised when the storage size specified for
a collection is too small to hold a single value of the designated type; this
implementation allocates more space than was specified by the length clause, as
allowed by AI-00558.

The following 264 tests check operations on sequential, text, and direct access
files; this implementation does not support external files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE210SA..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C {3)

CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) [EE2201D..E (2) CE2201F..N (9) CE2203A

CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411a CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110a
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401a
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405a EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414a
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C () CE390SL CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A expect that NAME ERROR is raised when an attempt
is made to create a file with an illegal name; this implementation does not
support the creation of external files and so raises USE_ERROR. (See section
2.3.)

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 102 tests.
The following tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003a B24007A B2400SA B25002B B32201A B33204A
B33205A B35701A B36171A B36201A B37101A B37102A
B37201A B37202A B37203a B37302a B38003a B38003B
B38008A B38008B B3800%9A B38009B B38103A B38103B
B38103C B38103D B38103E B43202c B44002A B48002A
B48002B B48002D B48002E B48002G B48003E B49003A
B49005A B49006A B49006B B4S007A B49007B B4900%9A
B4A010C 854A20A B54A25A B58002A B58002B B59001A
B59001cC B590011 B62006C B67001A B67001B B67001C
B67001D B74103E B74104A B743078B B83EO1A B85007C
B85008G B85008H B91004A B91005A B95003a B950078B
B95031A B9S074E BA1001A BC1002a BC1109A BC1109C
BC1206A BC2001E BC3005B BC3009C BD2AO6A BD2B0O3A
BD2DO3A BD4003A BD4006A BD8003A

E28002B was graded passed by Evaluation and Test Modification as directed by
the AVO. This test checks that pragmas may have unresolvable arguments, and it
includes a check that pragma LIST has the required effect; but for this
implementation, pragma LIST has no effect if the compilation results in errors
or warnings, which is the case when the test is processed without modification.
This test was also processed with the pragmas at lines 46, 58, 70 and 71
commented out so that pragma LIST had effect.

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT’'LAST as the
range constraint of a floating-point type declaration because the bounds lie
outside of the range of safe numbers (cf. LRM 3.5.7:12).

C83030C and C86007A were graded passed by Test Modification as directed by the
AVO. These tests were modified by inserting "PRAGMA ELABORATE (REPORT);" before
the package declarations at lines 13 and 11, respectively. Without the pragma,
the packages may be elaborated prior to package Report’s body, and thus the
packages’ calls to function REPORT.IDENT_INT at lines 14 and 13, respectively,
will raise PROGRAM_ ERROR.

B83EO1B was graded passed by Evaluation Modification as directed by the AVO.
This test checks that a generic subprogram’s formal parameter names (i.e. both
generic and subprogram formal parameter names) must be distinct; the duplicated
names within the generic declarations are marked as errors, whereas their
recurrences in the subprogram bodies are marked as "optional" errors--except
for the case at line 122, which is marked as an error. This implementation does
not additionally flag the errors in the bodies and thus the expected error at
line 122 is not flagged. The AVO ruled that the implementation’s behavior was
acceptable and that the test need not be split (such a split would simply
duplicate the case in B83EOlA at line 15).

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C were graded inapplicable by
Evaluation Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that unit’s body;
as allowed by AI-00408 and AI-00506, the compilation of the generic unit bodies
makes the compilation unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contain uses of the types that require a constraint. However, the

2-4

IMPLEMENTATION DEPENDENCIES

generic bodies are compiled after the units that contain the instantiations,
and this implementation creates a dependence of the instantiating units on the
generic units as allowed by AI-00408 and AI-00506 such that the compilation of
the generic bodies makes the instantiating units obsolete--no errors are
detected. The processing of these tests was modified by re-compiling the
obsolete units; all intended errors were then detected by the compiler:

BC3204C: CcO, Cl, C2, c3M, C4, C5, C6, C3IM
BC3205D: DO, D1M, D2, D1IM

BC3204D and BC3205C were graded passed by Test Modification as directed by the
AVO. These tests are similar to BC3204C and BC3205D above, except that all
compilation units are contained in a single compilation. For these two tests, a
copy of the main procedure (which later units make obsolete) was appended to
the tests; all expected errors were then detected.

CD2AS3A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value as ‘SMALL for a
fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
‘SMALLS may be omitted.

AD9001B and AD9004A were graded passed by Processing Modification as directed
by the AVO. These tests check that various subprograms may be interfaced to
external routines (and hence have no Ada bodies). This implementation requires
that a file specification exists for the foreign subprogram bodies. The
following commands were issued to the Librarian to inform it that the foreign
bodies will be supplied at link time (as the bodies are not actually needed by
the programs, these commands alone are sufficient:

ALC40 interface/system AD9001B
ALC40 interface/system ADSO04A

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external file.
This is acceptable behavior because this implementation does not support
external files (cf. AI-00332).

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately
by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

Mr Ken Butler .

Vice President, Product Development
Tartan Inc.

300, Oxford Drive

Monroeville, PA 15146 USA

Tel. (412) 856-3600

For sales information about this Ada implementation, contact:

Ms Marlyse Bennet
Tartan Inc.

12110 Sunset Hills Road
Suite 450

Reston, VA 22090 USA.
Tel. (703) 715-3044

Testing of this Ada implementation was conducted at the customer’s site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of
the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [ProS2].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point precision
that exceeds the implementation’s maximum precision (item e; see section 2.2),
and those that depend on the support of a file system -- if none is supported
(item d). All tests passed, except those that are listed in sections 2.1 and
2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3440
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 86
d) Non-Processed I/0O Tests 285%
e) Non-Processed Floating-Point

Precision Tests 264

f) Total Number of Inapplicable Tests 635 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A TKS0 cartridge containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the TKS50
cartridge were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of tests
was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as appropriate.
The executable images were transferred to the target computer system by the
communications link, an RS232 'Interface, and run. The results were captured on
the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of the
processing options for this implementation. It also indicates the default
options. The options invoked explicitly for validation testing during this test
were:

Options used for compiling:

/€40 Invoke the C40-targeted cross compiler. This qualifier
is mandatory to invoke the C40-targeted compiler.

/REPLACE Forces the compiler to accept an attempt to compile a
unit imported from another library which is normally
prohibited.

/NOSAVE_SOURCE Suppresses the creation of a registered copy of the

source code in the library directory for use by the
REMAKE and MAKE subcommands to ALC40.

No explicit linker options were used.
Test output, compiler and linker listings, and job logs were captured on a TKSO

cartridge and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The
meaning and purpose of these parameters are explained in [{UG89). The parameter
values are presented in two tables. The first table lists the values that are
defined in terms of the maximum input-line length, which is the value for

$MAX IN LEN--also listed here. These values are expressed here as Ada string
aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value
$MAX_IN_LEN 240 -- Value of V
$BIG_ID1 (1..V-1 => ‘A’, V => ’1')
$BIG_ID2 (1..V=1 => 'A’, V => *2')
$BIG_ID3 (1..V/2 => "A’) & '3’ &

(1..V=1-V/2 => ‘A’)
$BIG_ID4 (1..V/2 => ‘A’) & ‘4’ &

(1..V=1-V/2 => ‘A’)
$BIG_INT_LIT (1..V=3 => ’'0’) & "298"
$BIG_REAL _LIT (1..V=5 => ‘0’) & "690.0"
$BIG_STRING1 'me g (1..V/2 => 'A’) & ‘"
SBIG_STRING2 ‘s & (1..V-1-V/2 => ‘A’) & ‘1’ & ‘"’
$BLANKS (1..V=20 => *)

$MAX_LEN_INT_BASED_LITERAL
"2:" & (1..V-5 => ‘0’) & "11:"

$MAX_LEN_REAL_BASED_LITERAL
"16:" & (1..V=7 => '0’) & "F.E:"

S$MAX STRING_LITERAL o & (1..V=2 => ‘A’) & '™’

The following table lists all of the other macro parameters and their
respective values.

MACRO PARAMETERS

Macro Parameter Macro Value
SACC_SIZE 32
SALIGNMENT l
S$COUNT_LAST 2147483646
SDEFAULT_MEM_SIZE 16#FFFFFFFF#

SDEFAULT_STOR_UNIT 32

SDEFAULT_SYS_NAME T1320C40

SDELTA_DOC 2#1.0#E-31

SENTRY_ADDRESS SYSTEM.ADDRESS’ (16#2FF803#)
SENTRY_ADDRESS1 SYSTEM.ADDRESS’ (16#2FF804#)
SENTRY_ADDRESS2 SYSTEM.ADDRESS’ (16#2FF805#)
SFIELD_LAST 240

SFILE_TERMINATOR ‘!

SFIXED_NAME NO_SUCH_TYPE
SFLOAT_NAME NO_SUCH_TYPE
SFORM_STRING ne
SFORM_STRING2 "CANNOT_RESTRICT_FILE_CAPACITY"
$GREATER_THAN_DURATION
100_000.0
$GREATER_THAN_pURATION_BASE_LAST
131_073.0
SGREATER_THAN_FLOAT_BASE_LAST
3.50282E+38
SGREATER_THAN_FLOAT_SAFE_LARGE
1.08+38
$SGREATER_THAN_SHORT_FLOAT_SAFE_LARGE
1.0E+38
$HIGH_PRIORITY 100

$ILLEGAL_EXTERNAL_FILE NAME1
TLLEGAL_EXTERNAL_FILE_NAME1

SILLEGAL_EXTERNAL_FILE_NAME2
TLLEGAL_EXTERNAL_FILE_NAME2
SINAPPROPRIATE_LINE_LENGTH
-1

$INAPPROPRIATE_PAGE_LENGTH
-1

SINCLUDE_PRAGMA1l PRAGMA INCLUDE ("A28006D1.TST")

A-2

MACRO PARAMETERS

SINCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")
SINTEGER_FIRST =-2147483648
SINTEGER_LAST 2147483647

SINTEGER_LAST_PLUS_1 2147483648
SINTERFACE_LANGUAGE TI_C
$LESS_THAN_DURATION -100_000.0

SLESS_THAN_DURATION_BASE_FIRST
-131_073.0

SLINE_TERMINATOR .
SLOW_PRIORITY 10

SMACHINE_CODE_STATEMENT
Two_Opnds’ (LDI, (Imm,S), (Reg,R0));

SMACHINE_CODE_TYPE Instruction_Mnemonic

SMANTISSA_DOC 31

$MAX_DIGITS 5

$MAX_INT 2147483647
$MAX_INT_PLUS_1 2147483648

$MIN_INT -2147483648

SNAME : NO_SUCH_TYPE_AVAILABLE
$NAME_LIST T1320C40

SNAME_SPECIFICATION1 DUA2:[ACVC1l1.C30.TESTBED]X2120A.;1
SNAME_SPECIFICATION2 DUA2:[ACVC1ll.C30.TESTBED)X21208B.;1

SNAME SPECIFICATION3 DUA2:(ACVC11.C30.TESTBED)X3119A.;1

$NEG_BASED_INT 16#FFFFFFFES
$NEW_MEM_SIZE 16#FFFFFFFF#
SNEW_STOR_UNIT 32
SNEW_SYS_NAME TI320C40
SPAGE_TERMINATOR .

SRECORD DEFINITION record Operation: Instruction Mnemonic;

Operand_1: Operand; Operand_2: Operand;
end record;

SRECORD_NAME Two_Opnds
$TASK_SIZE 32
STASK_STORAGE_SIZE 4096

$TICK 0.00006103515625

A-3

$VARIABLE_ADDRESS
$VARIABLE_ADDRESS1
$VARIABLE_ADDRESS2

SYOUR_PRAGMA

SYSTEM.ADDRESS ‘ (16#2FF800#)
SYSTEM.ADDRESS ‘' (16#2FF801¥)
SYSTEM.ADDRESS ' (16#2FF802#)

NO_SUCH_PRAGMA

MACRO PARAMETERS

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise, references
in this appendix are to compiler documentation and not to this report.

Chapter 4
Compiling Ada Programs

The TADA/C40 command is used to compile and assemble Ada compilaton units.

4.1. THE TADA/C40 COMMAND

Format: The TADA/C40 command has this format:
S TADA/C40 [/qualifier [(option, ...) ...]) file-spec{iqualifier((option, ...)...]]

The parameter file-spec is a source file name. Since the source files need not reside in the directory in which
the compilation takes place, file-spec must include sufficient directory information to locate the file. If no
extension is supplied with the file name, a default extension of . ADA will be supplied by the compiler.

The source file may contain more than one compilation unit, but it is considered good practice w0 place only
one compilation unit in a file.

Output: The compiler sequentiaily processes all compilation units in the file. Upon successful compilation
of a umit, .

o The Ada program library, LIBRARY . DB, is updated to reflect the new compilation time and any new

dependencies.

¢ One or more separate compilation files and/or object files are generated.

If no errors are detected in a compilation unit, the compiler produces an object module and updates the
library. If any error is detected. no object code file is produced, a source listing is produced, and no library entry
is made for that compilation unit. If warnings are generated. both an object code file and a source listing are
produced. and the library is updated.

Refinements: The compiler is capable of limiting the number of library units that become obsolete in the
following manner. A library unit is a refinement of its previously compiled version if the oaly changes that were
made are:

® Adding or deleting of comments

* Adding subprogram specifications after the last declarative item in the previous version

A qualifier is required to cause the compiler to detect refinements. When a refinement is detected by the
compiler, dependent units are not marked ss obsolete. If a unit is a refinement of its previous compilation, 0o
other unit dependent on it becames obsolese because of this recompilation. The exception to this rule s, the body
of the specification is still obsolete for the case where a new declaration was added.

COMPILATION SYSTEM MANUAL

4.2. COMMAND QUALIFIERS

Command qualifiers indicate special actions to be performed by the compiler or special output file properties.
A qualifier identifying the target-code format musr be used to invoke the C40-targeted compiler. The following
qualifiers are available:

/C40 Invoke the C40-targeted cross compiler. This qualifier is mandatory to
invoke the C40-targeted compiler.
/ CALLS=option Allows the user to specify the size of the address space into which the

linked application code will fit. Thecoxnpxlerwﬂ.lgenemeeode based
on the user’s assertion. The available options are:

LONG The user asserts that the linked application code will nor
fit within a 23-bit (22 - 1) address space.
SHORT The user asserts that the linked application code will fit

within a 15-bit (219 - 1) address space.

If the /CALLS=SHORT assertion is incorrect, the linker will produce
error messages at link-time. If the /CALLS=LONG switch is given and
the code fits within a 23-bit (22 - 1) space. no error is given by the
linker, because the code is still correct; however, it is less efficient. By
defauit, the compiler will generate code assuming that the linked applica-
tion code fits within a 23-bit (22 - 1) address space.

/CROSS_REFERENCE

/NOCROSS_REFERENCE [Default]
Controls whether the compiler generates cross-reference information in
the object code file to be used by the TXREF tool (see Section 4.5). This
qualifier may be used only with the Tartan Tool Set.

/CATA_PAGE_IS_ROM Limit data-page references to compile- and link-time constants. Stati-
cally allocated varisbles normally accessed using data page addressing
will be reached via "long" references. This option must be used on al
compilation units of an application if it is used on any one.

/DEBUG

/NODEBUG [Default] Controls whether debugging information is included in the object code
file. It is not necessary for all object modules to include debugging
information to obtain a linkable image, but use of this qualifier is en-
couraged for all compilations. No significant execution-time penaity is

incurred with this qualifier.

/DELAYED_BRANCHES [Default]

/NODELAYED _BRANCHES Controis whether the compiler generates delayed branch imstructions
(detailed in Section 11.4).

/ENUMERATION_IMAGES (Default]

/NOENUMERATION_IMAGES Causes the compiler to omit data segments with the text of equmeration
literals. This text is normally produced for exported enumeration types in
order to support the text auributes (* IMAGE, * VALUE and 'WIDTH).

/ERRCR_LIMIT=n

/T IXUP[=oprion]

/HUGE_LOOPS [Default]
/NCHUGE_LOOPS

/ LIBRARY=library-name

/LIST{=option]
/NOLIST

COMPILING ADA PROGRAMS

You should use /NCEWUMERATICN_IMAGEZS only when you can
guarantee that 20 unit that will import the enumeration type will use any
of its text aoributes. However. if you are compiling a unit with an
enumeration type that is not visible to other compilation units, this
qualifier is not needed. The compiler can recognize when the text at-
tributes are not used and will not generate the supporting strings,

Stops compilation and produces a listing after n errors are encountered.
where 7 is in the range O .. 255. The default value for n is 255. The
/ERROR_LIMIT qualifier cannot be negated.

When package Machine_Code is used, controls whether the compiler
attempts to alter operand address modes when those address modes are
used incorrectly. The available options are:

QUIET The compiler atterupts to generate exma instructions to
fix incorrect address modes in the array aggregates
operand field.

WARN The compiler attempts to generate exmra insgructions to
fix incorrect address modes. A warning message is
issued if such a correction is required.

NONE The compiler does nor attempt to fix any machine code
insertion that has incorrect address modes. An error
message is issued for any machine code insertion that is
incorrect.

When no form of this qualifier is supplied in the command line, the
default condition is /F IXUP=QUIET. For more information on machine
code insertions, refer to Section 3.10 of this manual,

When the NCHUGE_LOCOPS qualifier is specified, the user is asserting
that no loops will iterate more than 22 times. This limit includes non-
user specific loops, such as those ioops generated by the compiler to
operate on large objects. Erroneous code will be generated if this asser-
tion is false.

Specifies the library into which the file is to be compiled. The compiler
still reads any ADALIB. INI files in the defauit directory and will report
any associated error, but this qualifier will override the ADALIB. INI.

Controls whether s listing file is produced. If produced. the file has the
source file name and & . LIS extension. The available opticas are:

ALWAYS Always produce a listing file
NEVER Never produce 1 listing file, equivalent to /NOLIST

ZRROR Produce a listing file only if a compilation error or wam-
ing occurs

COMPILATION SYSTEM MANUAL

/MACHINE_CCDE[=option]

/MAX_RPTS_CCUNT=n

, CBTIMIZE=option

When no form of this qualifier is suppiied in the command line, the
default condition is ; ZZ3T=ZRRCR. When the 237 qualifier is sup-
plied without an option. the default option is ALWAYS.

Controls whether the compiler produces an assembly code file in addition
to an object file, which is aiways generated. The assembly code file is
not intended to be input to an assembler, but serves as documentation
only. The available opdons are:

NONE Do not produce an assembly code file.

INTERLEAVE Produce an assembly code file which interieaves
source code with the machine code. Ada source
appears as assembly language comments.

NOINTERLEAVE Produce an assembly code file without interieaving.

When no form of this qualifier is supplied in the command line, the
defauit opdon is NONZ. Specifying the /MACHINE_CCDE qualifier
without an option is equivalent to supplying
/MACHINE_CODE=NOINTEZRLEAVE.

Controls the maximum iteration count for a loop using the RPTS instruc-
tion, where 7 is an integer in the range -1 .. 23! -1. Since an RPTS loop is
non-interruptible, this qualifier allows control over the interrupt latency
time. The default value is 32. A value of minus one (-1) specifies no
limit. A value of zero (0) specifies than that no RPTS instructions will be
generated. Any positive value sets the maximum iteration count. If a
value in the range O .. 31 is used. it will be necessary to customize the
runtimes. Please contact Tartan for information on how to perform these
customizations.

Controls the level of optimization performed by the compiler according
to the following options: MINIMUM, LCW, STANDARD, TIME, and
SPACE. The results of the options are:

MINIMUM Performs coatext determination, comstant folding, al-
gebraic manipulation, and short circuit analysis. Inlines
are not expanded.

LOW Performs MINIMUM optimizations plus common sub-
expression elimination and equivalence propagation
within basic blocks. It also optimizes evaluaton order.
Inlines are not expanded. AdaScope performs best when
compiled at this level.

STANDARD (Best tradeoff for space/time) - defauit option. Performs
LOW optimizations pius flow analysis which is used for
common subexpression elimination and equivalence
propagation across basic blocks. It also performs in-
variant expression hoisting, dead code elimination, and
assignment killing With STANDARD optimization.
lifetine analysis is performed to improve register alloca-
tion and if possible, inline expansion of subprogram calls
indicated by pragma INLINE are performed.

/PARSE
/NCPARSZ

/PHASES
/NOPHASES [Default]

/REFINE
/NOREF INE {Default]

/REMAKZE

/REPLACE
/NOREPLACE (Default)

/REV=n

/ SAVE_SOURCE [Default]

COMPILING ADA PROGRAMS

~Turo

TIME Performs STANCARC opumizatons pius inline expag-
sion of subprogram calls which the opumizer decides are
profitable to expand (from an execution time perspec-
tive). Other optimizations which improve execution time
at a cost 10 image size are performed only at this level.

SPACE Performs those optmizations which usually produce the
smallest code, often at the expense of speed. Please note
that this optimization level may not always produce the
smallest code. Under certain conditons, another level
may produce smaller code.

Extracts syntacticaily correct compilation unit source from the parsed file
and loads this file into the library as a parsed unit Parsed units are, by
definition. incomsistent. This switch allows users to load units into the
library without regard to cormrect compilation order. The command
REMAKE is used subsequently to reorder the compilation units in the
correct sequence. See Section 13.2.4.3 for 2 more complete description
of this command.

Controls whether the compiler announces each phase of processing as it
occurs. These phases indicate progress of the compilation. If there is an
error in compilation, the error message will direct users to a specific
locaton.

Controls whether the compiler, when compiling a library unit, determines
whether the unit is a refinement of its previous version and, if so, does
not make dependent units obsolete. The default is /NOREF INE.

Data on this switch is provided for information only. This switch is used
exclusively by the Tartan Ada Librarian to nodfy the compiler that the
source undergoing compilation is an internal source file. The switch
causes the compiler to retain old external source file information. This
switch should be used only by the librarian and command files created by
the librarian. See Section 3.6.1.

Forces the compiler to accept an attempt to compile a unit imported from
another library which is normally prohibited.

Revision of the CAQ silicon, where n is an integer in the range 1 .. 2. The
default value for n is 2.

COMPILATION SYSTEM MANUAL

4

.-

- NCSAL URCZ

3
Q]
w
(@]

/ SUPPRESS[=(option, ...)]

/ SYNTAX_ONLY
/NOSYNTAX_ONLY [Default]

/WARNINGS [Default]
/NOWARNINGS

Suppresses the creation of a registered copy of the source code in the
library directory for use by the REZMAKEZ and MAKZ subcommands to
ALC40.

Suppresses the specific checks identified by the options supplied. The
parentheses may be omtitted if only one option is supplied. Invoking this
option will not remove all checks if the resulting code without checks
will be less efficient. The /SUPPRESS qualifier has the same effectas a
global pragma SUPPRESS applied to the source file. If the source
program also contains a pragma SUPPRESS, a given check is suppressed
if either the pragma or the qualifier specifies it; that is, the effect of a
pragma SUPPRESS cannot be negated with the command line qualifier.
The /SUPPRESS qualifier cannot be negated.

The available options are:

ALL Suppress all checks. This opuon is the
default when no option is supplied.

ACCESS_CHECK As specified in the Ada LRM, Secton 11.7.

CONSTRAINT_CHECK Equivalent of all the following:
ACCESS_ ~"ECK, INDEX CHECK,

DISCRIMINANT_CHECK,
LENGTH_CHECK, RANGE_CHECK.

DISCRIMINANT _CHECK As specified in the Ada LRM, Section.11.7.

DIVISION_CHECK Will suppress compile-time checks for divi-
sion by zero, but the hardware does not per-
mit efficient runtime checks, so none are

done.
ELABORATION_CHECK As specified in the Ada LRM. Section 11.7.
INDEX_CHECK As specified in the Ada LRM, Section 11.7.
LENGTH_CHECK As specified in the Ada LRM, Section 11.7.
OVERFLOW_CHECK Will suppress compile-time checks for over-

flow, but the hardware does not permit ef-
ficient runtime checks. so none are done.

RANGE_CHECK As specified in the Ada LRM, Section 11.7.

STORAGE_CHECK As specified in the Ada LRM. Section 11.7.
Suppresses only stack checks in generated
code, not the checks made by the allocator as
a result of 2 new operation.

Examines units for syntax errors, then stops compilation without entering
a unit in the library.

Controls whether the wamning messages generated by the compiler are
displayed to the user at the terminal and in a listing file, if produced.
While suppressing warning messages aiso haits display of informational
messages, it does not suppress Error, Fatal_Error.

COMPILING ADA PROGRAMS

CWAZ T_STATES=n

. WAIT_STATES=oprion:n [,option:n ...,
The wait states command line qualifier accepts either a single numeric
digit or a list of one or more options.

A single pumeric digit specifies the pumber of wait states to use for
program code, data page. heap, and stack. where 7 is an integer in the
range O .. 7. The default value for n is 2 or the maximum wait state of
program code, data page, heap, or stack.
The following oprions may be specified:

CODE:n Specifies the number of wait states for the block of
memory in which program code will be executed, where
n is an integer in the range 0 .. 7. The default value for n
is 2.

DATA:n Specifies the aumber of wait states for the block of
memory where the data page for the current compilation
unit resides. where 7 is an integer in the range 0 .. 7. The
default value forn is 2.

HEAP:n Specifies the number of wait states for the block of
memory where the heap resides, where 7 is an integer in
the range 0 .. 7. The defauit value fornis 2.

STACK:n Specifies the number of wait states for the block of
memory where the stack resides, where 7 is an integer in
the range O .. 7. The default value for n is 2.

Examples:
TADA/C40/WAIT_STATES=4)
TADA/C40/WAIT_STATES=(CODE:4, [ATA:2)
TADA/C40/WAIT=(C:1,D:2,H:3,5:4)
TADA/C40/WAIT_STATES= (HEAP=1, STACK=7)
TADA/C40/WAIT_STATES:2
TADA/C40/WAIT:CODE:1

Note that *‘="" and *‘:'" are interchangeable. A keyword can be
specified by using only enough characters to make it unique. When more
than ome option is specified, the list of oprions must be enclosed in
parentheses. .

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise, references
in this appendix are to linker documentation and not to this report.

B-2

THE TARTAN LINKER

2.2. INVOKING THE LINKER

The linker may be invoked ¢ither through the Ada librarian, or directly by the user. Invocaton through the
librarian ensures that ail Ada language consistency and dependency requirements are met. Use of the librarian is
the most common way of linking an Ada program. Direct invocation of the linker is used mosdy for link
operations that are outside the boundaries of an Ada program. Examples of the latter are consuction of
assembly language boot images, combining multiple Ada programs into a single image, or creating patches for an
existing program.

2.2.1. Using the Tartan Librarian to Invoke the Linker

Normaily, Ada programs are linked using the Ada librarian. The command for linking through the librarian is

$ ALC40 LINK [/qualifier..] main_unit

The parameter main_unit must be supplied. It specifies the unit in the library to be made the main program.

The use of the Ada librarisn commands to link a program is described in the Compilation System Manual,
Chapters 3 and 9. Here we will describe the interface between the librarian and the linker, and the manner in
which the necessary information is passed.

The Ada librarian’s LINK subcommand checks that the unit within the library specified by the user has the
legal form for a main unit, checks all its dependencies, finds all required object files, and invokes the linker. The
librarian creates two files that are used as input to the link process. These files are listed by name below:; the
name main_unit refers to the name of the main program unit.

main_unit .CTL This file contains the list of object files that are to be included in the link. The file
is written as a list of linker WITH commands, each specifying 1 file to be included.
main_unit.etof This object file contains a procedure to perform elaboration of the Ada program.

The code in this file is included in the executable and will ultimately be invoked
by the Ada runtimes when the program is executed.

These files are normally deleted by the Ada librarian at the completion of the link step. They may be retained
by use of the qualifier /KEEP, described in the Compilation System Manual, Section 13.5.10. If no changes are
made to the program that would invalidate the dependency and closure information contained in these files,
subsequent links may be performed by invoking the linker directly.

After writing the necessary files, the Ada librarian invokes the linker. The invocation performed is equivalent
10 the following user-level command:

$ TLINKC40 /CONTROLw=linker_consrol_file /OUTPUT=main_unit. XTOF

In this example, linker_control_file is the name of a file containing linker control commands. This control file
describes the details of how the program image is to be constructed for the particular target system. The user
may specify to the Ada librarian which linker control file to use. If no file is specified, the librarian uses a defauit
control file located in the TADAHOME directory and named TLINKC40.LCF. Note that the default coatrol file
expects the qualifier /OUTPUT= to be specified in the command line. It also expects the file main_unit.CTL to
exist.

2.2.2. Direct Invocation of the Linker

The linker is controlled by command qualifiers and by commands in a linker control file. Command
qualifiers are used to specify things that vary according to the particular link being performed. Examples are the
name of the output file, whether or not to produce s link map, and whether to eliminate unused code. The coatrol
file is used to specify in general how to build a program for the particular target system and hardware. The
command qualifiers may vary with each link, but the control file is usuaily fixed for the system at hand.

The general format of the invocation of the linker is
$ TLINKC40 /CONTROL=linker_control_file [/qualifier...] filespec...

LINKER MANUAL

Some command qualifiers specify particular file names (for exampie. the name of the linker conrol file).
Other file names may also appear in the command line; these names are interpreted as the names of object files to
be included as input to the link process. Input files may also be specified within the linker congrol file.

When the linker is invoked directly, the qualifier /CONTROL=/inker_control_file must be supplied in the
command line. (When invoked by ALC40, it is the librarian, not the linker. that supplies a default linker control
file.) This command qualifier directs the linker to the control file that specifies how to perform the link. Ounly
one such file may be specified. A user who does not have a special conrrol file may use the default file used by
the Ada librarian. Refer to the previous section for a description of the link process used by the Ada librarian.

The additional arguments to the linker depend upon the convention used by the control file you specify. For
example, input object files may be specified on the command line, in the conrrol file, or in another linker control
file. Specification on the command line is convenient if a smail cumber is involved. For larger numbers of input
files, the WITH command (Section 2.6.5) may be used inside the linker control file. or in another linker control
file included with the CONTROL file command.

If your conrtrol file uses the same convention as the default one, the command line wiil look like:
$ TLINKC40 /CONTROL=linker_control_file /OUTPUT=oustile.xcof

The control file would then expect that the file ousfile.ctl contains the list of input file WITH commands. A
CONTROL command in the linker control file causes this additional file to be read. A derived file specification
(see Section 2.6.9) is used in the CONTROL command to allow the linker to infer the file name from the specified
output file name.

The convention used by the default control file is only one way in which arguments could be specified. Your
own linker controt file can be set up to expect the input and output file on the command lins, or to derive the
- output filename from a specified input file. or to specify both in the conwoi file. The convention used in
special-purpose control files can be adjusted to fit the circumstances at hand. Section 2.5.2 introduces the WITH,
OUTPUT, and CONTROL commands that are used to set up customized conventions.

A user who is simply relinking a program will need to know only a couple of command qualifiers and the
convention established by the system-specific linker controi file used for the system. A user who needs to aiter
the program layout for a specific target system will require the wider specoum of commands available in the
linker control file. Command qualifiers are described in the next section; the linker control file commands are
described in Section 2.5.

LN
]

THE TARTAN LINKER

2.3. COMMAND QUALIFIERS

This section describes the command qualifiers available to a user who directly invokes the linker. The
qualifier names can be abbreviated to unique prefixes; meﬁmlewumfﬂcxemforancumqumﬁerm
The qualifier names are not case sensitive.

/ CONTROL=linker_control_file

/OQUTPUT=filename

/MAP

/MAP=filename

/ALLOCATIONS
/UNUSED
/SYMBOLS
/LOCALS=filename
/RESOLVEMODULES

The specified file contains linker control commands. Only one such file may be
specified, but it can include other files using the CONTROL command. Every
invocation of the linker must specify a control file.

The specified file is the name of the first output object file. The module name for
this file will be nuill. Oniy one output file may be specified in this manner.
Additional output files may be specified in the linker control file.

Produce a link map containing all information except the unused section listings.
When /MA2 is specified without a file name. the name of the file containing the
link map is specified by the LIST command in the linker control file. If your
conmlﬁledoesnotspecxfynmmemdyoureq\mahnng.thchsmgwmu
written to the default output stream.

Produce s link map contining all information except the unused section listings.
The map is writtea to the specified file.

-Produce a link map showing the section allocations.

Produce a link map showing the unused sections.
Produce a link map showing global and external symbois.
Causes the linker to retain local symbol definitions in the output file specified.

This qualifier causes the linker to nor perform unused section elimination.
Specifying this option will generally make your program larger, since unm-
referenced data within object files will not be eliminated. Refer to Sections 2.6.3
and 2.4.3.2 for information on the way that unused section elimination works.

Note that several listing options are permitted because link maps for real systems can become rather large.
and writing them consumes a significant fraction of the total link time. Options specifying the contents of the
link map can be combined, in which case the resulting map will contain all the information specified by any of

the switches.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix, are
provided by the customer. Unless specifically noted otherwise, references in
this Appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not a part
of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147_483 648 .. 2 147 _483_647;
type FLOAT is digits 6 range -16#0.1000_OO#E+33 .. 16#0.FFFF_FF#E+32;

type LONG_FLOAT is digits 9 range -16#0.1000_000_O#E+33 ..
16#0.FFFF_FFFF_O#E+32;
type DURATION is delta 0.0001 range -86400.0 .. 86400.0;
== DURATION’SMALL = 2#1.0#E-14 (that is, 6.103516E-5 sec)

Se s s s

end STANDARD;

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to the LRM, which is Military Standard, Ada Programming

Language, ANSI/MIL-STD-1815A (American National Standards Institute, Inc., February 17, 1983) .

5.1. PRAGMAS

5.1.1. Predefined Pragmas

This section summarizes the effects of and restrictions on predefined pragmas.

¢ Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect. ’
Space deallocated by means of UNCHECKED_DEALLOCATION will be reused by the allocation of new

¢ Pragma ELABCRATE is supported.

* Pragma INLINE is supported.

¢ Pragma INTERFACE is supported. The LANGUAGE_NAME TI_C is used to make calls to subprograms
(written in the Texas Instruments C language) from Tartan Ada. Any other LANGUAGE _NAME will be
accepted, but ignored, and the default language, Ada, will be used.

o Pragma LIST is supported but has the intended effect only if the command qualifier /LIST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

e Pragma MEMORY_SIZE is supported. See Section5.1.3.

o Pragma OPTIMIZE is supported except when at the outer level (that is, in a package specification or
body).

¢ Pragma PACK is supported.

o Pragma PAGE is supported but has the intended effect oaly if the command qualifier /,IST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Pragma PRIORITY is supported.

* Pragma STORAGE_UNIT is accepted but no value other than that specified in package SYSTEM (Section
5.3) is allowed.

* Pragma SHARED is not supported.
* Pragma SUPPRESS is supported.

* Pragma SYSTEM_NAME is accepted but no value other than that specified in package SYSTEM (Section
53) is allowed.

5.1.2. Implementation-Defined Pragmas

Impiementation-defined pragmass provided by Tartan are described in the following sections.

COMPILATION SYSTEM MANUAL

5.12.1. Pragma LINKAGE _NAME

The pragma LINKAGE_NAME associates an Ada entty with a sting that is meaningful extemaily; for

example, to a linkage editor. It takes the form

pragma LINKAGE_NAME (Ada-simple-name, string-constant)
The Ada-simple-name must be the name of an Ada entity declared in a package specificarion. This entity must be
one that has a runtime representation: for example, a subprogram, exception or object. It may not be a named
sumber or string constant. The pragma must appear after the declaration of the entity in the same package
specificaton.

The effect of the pragma is to cause the szring-conszans to be used in the generated assembly code as an
exiernal name for the associated Ada eatity. It is the respousibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

This pragma has no effect when applied 10 a subprogram or to a renames declaration; in the latter case, no
warning message is given.

When determining the maximum allowable length for the external linkage name. keep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name bas 5 fewer significant characters than the lower limit of other tools that need to process
the name (for example, 40 in the case of the Tartan Linker).

Note: Names used as pragma LINKAGE_NAME are case semsitive. For example,
aNy_Old_LINKname is not equivalent to ANY OLD_LINKNAME. Therefore, a misspelled
lininame will cause the link to fail.

§.122. Pragma FOREIGN_BODY

In addition 0 pragma INTERFACE, Taran Ada supplies pragma FOREIGN_BODY as a way to access
subprograms in other languages.

Unlike pragma INTERFACE, pragma FCREIGN_BODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

There are some restrictions oa pragma FOREIGN_BODY that are not applicable to pragma INTERFACE:

¢ Pragma FORE IGN_BODY must appear in a non-generic library package.
¢ All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
© Types may not be declared in such a package.

Use of the pragma FOREIGN_BODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the ALC40 FOREIGN_BODY command
described in Section 3.3.3. The pragma is of the form:

pragma FOREIGN_BODY (Language name (, elaboration_routine_name))

The parameter Language name is a string intended to allow the compiler to identify the calling convention
used by the foreign module (but this functionality is not yet in operaton). Curremly, the programmer must
easure that the calling convention and data representation of the foreign body procedures are compatible with
those used by the Tartan Ada Compiler (see Section 6.5). Subprograms called by tasks should be reentrant.

The optional elaboration_routine_name string argument is a linkage name identifying a routine to initialize
the package. The routine specified as the elaboration_routine_name, which will be called for the elsboration of
this package body, must be a giobal routine in the object module provided by the user.

A specification that uses this pragma may contsin only subprogram declacations, object declarations that use
an unconstrained type mark, and oumber declarations. Pragmas may aiso appear in the package. The type mark
for an object cannot be & task type, and the object declaration must not bave an initial value expression. The
pragma must be given prior to any declarations within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated. the pragma is ignored and 2 warning
is generated.

APPENDIX F TO MIL-STD-1815A

The foreign body is entirely respoasibie for initializing objects declared in a package utilizing pragma
FCREIGN_30DY. In partcular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, cerain
record types and composite types containing components of the preceding kinds of types.)

Pragma LINKAGE_NAME should be used for all declarations in the package, including any declarations in a
mwdpmgespeqﬁunmwbemmmaemnoconﬂxmghnhm If pragma LINKAGE_NAME is
not used, the cross-reference qualifier, /CROSS_REFERENCE, (see Section 4.2) should be used when invoking
the compiler. Themdnngmmfuemenbbofhnknmshouldthenbempecwdwdmmmmum
conflicting linknames have been assigned by the compiler (see also Section 4.5). In the following example, we
want to call a function plmn which computes polynomials and is written in assembly.

package MATH_FUNCTIONS is
pragma FOREIGN_30DY ("assembly");
function POLYNOMIAL (X:INTEGER) return INTEGER;
-~ Ada spec matching the assembly routine
pragma LINKAGE_NAME (POLYNOMIAL, "plmn");
-- Force compiler to use name "plmn”" when referring to this
-- function
end MATH_FUNCTIONS;

with MATH FUNCTIONS, use MATH FUNCTIONS;
ure MAIN is
X:INTEGER := POLYNOMIAL(10);
-— Will generate a call to "plmn"
end MAIN;
To compile, link and run the above program, you must:
1. Compile MATH_FUNCTIONS
2. Compile MAIN
3. Provide the object module (for example, math. TOF) containing the assembled code for plmn
4. Issue the command:
$ ALC40 FOREIGN MATH_FUNCTIONS MATH.TOF
5. Issue the command:

$ ALC40 LINK MAIN

Without Step 4, mmmmwlmkwmmmmmmgemfmgmdamgpa&mebodyfm
MATH_FUNCTIONS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma cootained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command ALC40 FOREIGN_BODY (see
Section 3.3.3) to use an Ada body from another library. The Ada body from another library must have been
compiled under an identical specification. The pragma LINKAGE_NAME must have been applied to all entities
declared in the specification. The only way to specify the linkname for the elaboration routine of an Ada body is
with the pragma FORE IGN_BODY.

COMPILATION SYSTEM MANUAL

5.1.3. Pragma MEMORY_SIZE

This section details the procedure for compilation of a2 new unit, such as pragma MEMCRY_SIZZ, with a
sysiem pragma. The new unit must be compiled into a library that contains package SYSTEM. For most users,
the STANDARD _PACKAGES library will be the library that also includes package SYSTEM.

1. Thaw STANDARD PACKAGES .SPEC.
2. Compile this unit into STANDARD_ _PACKAGES . ROOT. This step updates package SYSTEM.
3. Freeze STANDARD_PACKAGES . SPEC.

Following these steps will allow you to modify the maximum address space.

APPENDIX F TO MIL-STD-1815A

2. IMPLEMENTATION-DEPENDENT ATTRIBUTES
No implementation-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM

The parameter values specified for the Texas Insruments C40 processor family target in package SYSTEM
- (LRM 13.7.1 and Annex C) are:

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (TI320C40);
SYSTEM_NAME : constant NAME := TI320C40;
STORAGE UNIT : comstant := 32;

MEMORY SIZE : constant := l6#FFFFFFFT#4;

MAX_INT : constant := 2_147_483_647;

MIN_INT : constant := -MAX_INT - 1;

MAX_DIGITS : constant := 9;

MAX_MANTISSA : constamt := 31;

FINE_DELTA : comstant := 2#1.0#e-31;

TICK constant := 0.00006103515625 -~ 2**(-14)

subtype PRIORITY is INTEGER range 10 .. 100;
DEFAULT_PRIORITY : constant PRICRITY := PRIORITY'FIRST;
RUNTIME EZRROR : exception;

end SYSTEM;

[%4

COMPILATION SYSTEM MANUAL

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES

The following sections explain the basic reswrictions for representation specifications followed by additional
restrictions applying to specific kinds of clauses.

5.4.1. Basic Restriction
The basic restriction on representation specifications (LRM 13.1) is that they may be given only for types
declared in terms of a type definition, excluding a GENERIC_TYPE CEFINITION (LRM 12.1) and a

PRIVATE_TYPE_DEFINITION (LRM 7.4). Any representation clause in violation of these rules is not obeyed
bythecompdu- an error message is issued.

Further restrictions are explained in the following sections. Any representation clauses violating those
restrictions cause compilation to stop and a diagnostic message to be issued.

5.4.2. Length Clauses
Length clauses (LRM 13.2) are, in general, supported. The following sections detail use and restrictions.

5.4.2.1. Size Specifications for Types
The rules and restrictions for size specifications applied to types of various classes are described below.
The following principle rules apply:
1. The size is specified in bits and must be given by a static expression.
2. The specified size is takan as a mandate to store objects of the type in the given size wherever feasible.

No auempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

® An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine (i.e., 0o attempt is made to create objects of non-referable size on
the stack). If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example:
type MY_ENUM is (A,B);
for MY_| ENUM’SIZE use 1;
V,W: MY _ENUM; -- will occupy two storace
-- units on the stack
-=- (if allocated at all)
type REC is record
V,W: MY_ENUM;
end record;
pragma PACX(REC);
O: REC; -- will occupy one storage unit

¢ A formal parameter of the type is sized according to calling conventions rather than size specifica-
tions of the type. Appropriate size conversions upon parameter passing take place automatically
and are transparent to the user.
¢ Adjacent bits to an object that is a component of a composite object, but whose size is non-
referable, may be affected by assignments to the object, uniess these bits are occupied by other
compounents of the composite object (i.e., whenever possible, a component of non-referabie size is
made referable).
In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational sizes in different contexts.
Nots: A size specification cannot be used to force a cermain size in value operations of the type; for
example:

AFPENDIX F TO MIL-STD-1815A

type MY INT is range (..5533%;

’
£oz MY_INT’SIZE use 15; -- 2.X.
A,B: MY_INT;
...A + 3,.. -- this operation will generally e

-- executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In coatrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. For exampie: '

type MY _INT is range 0..2**15-1;

for MY INT’SIZE use 1l§; -— (1)

subtype SMALL MY INT is MY_INT range 0..255;
type R is record

X: SMALL_MY_INT;

ené.éecord;
the component R.X will occupy 16 bits. In the absence of the length clause at (1), R.X may be
represented in 32 bits.
Size specifications for access types must coincide with the default size chosen by the compiler for the type.
Size specifications are not supported for floating-point types or task types.
No useful effect can be achieved by using size specifications for these types.

5.42.2, Size Specification for Scalar Types

The specified size must accommodate all possible values of the type including the value 0, even if 0 is not in
the range of the values of the type. For numeric types with negative values, the number of bits must account for
the sign bit. No skewing of the representation is atempted. Thus,

type MY_INT is range 100..101;
requires at least 7 bits, aithough it has only two values, while
type MY_INT is range -101..-100;
requires 8 bits to account for the sign bit.

A size specification for a real type does not affect the accuracy of operations on the type. Such influence

should be exerted via the ACCURACY_DEFINITION of the type (IRM35.7,35.9).

A size specification for a scalar type may not specify s size larger than the largest operation size supported by
the target architecture for the respective class of values of the type.

5.42.3. Size Specification for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy. Any alignment constraints on the component type (see Section 5.4.7) must be met.

The size of the component type cannot be influenced by a leagth clause for an array. Within the limits of
representing all possiblie values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the compooent type, but not for the armay type, the component size is
rounded up to a referable size, uniess pragma PACK is given. This rule applies even to boolean types or other
types that require only a singie bit for the representation of all values.

COMPILATION SYSTEM MANUAL

3.4.2.4. Size Specificadion for Record Types

A size specification for a record type does not influence the defauit type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of
components can be exerted by means of (partal) record representation clauses or by pragma PACK.

Neither the size of component types. naor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain either dope
information for arrays whose bounds depend on discriminants of the record or relative offsets of components

within a record layout for record components of dynamic size. These xmplementanon-dependcm components
cannot be named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representaton over defauit type mapping must be
accomplished by representation clauses or pragma PACK.

5.4.2.5. Specification of Collection Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any atempt to allocate more objects than the collection can hold causes 2 STORAGE_ERROR exception to be
raised. Dynamically suedrecordsoramys may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. No matter what the requested
object size, the allocator must allocate a minimum of 2 words per object. This lower limit is necessary for
administrative overhead in the allocator. For example, a request of 5 words results in an allocation of 5 words; a
request of one (1) word results in an allocation of 2 words.

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGE_ _ERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified. no access collection is allocated.

5.4.2.6. Specification of Task Activation Size

‘Ihespeciﬁaﬁonofanskactivationsizeuusesthcuskacﬁvationmbeaﬂoeatedwiththespeciﬁedsize. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

Any auempt to exceed the activation size during execution causes a STORAGE_ERROR exception to be
raised. Unlike collections, there is no extension of task activations.

5.4.2.7. Specification of ' SMALL

Only powers of 2 are allowed for * SMALL.

The length of the representation may be affected by this specification. If a size specification is also given for
the type, the size specification takes precedence:; it must then be possible 10 accommodate the specification of
’ SMALL within the specified size.

5.4.3. Enumeration Representation Clauses
For emumeration representation clauses (LRM 13.3), the following restrictions apply:
¢ The internal codes specified for the literals of the enumeration type may be any integer value between

INTEGER’FIRST and INTEGER' LAST. It is strongly advised that you do not provide a representation
clause that merely duplicates the defauit mapping of enumeration types which assigns consecutive numbers

5-8

APPENDIX F TO MIL-STD-i81SA

in ascending order starting with zero (0). Unnecessary runtime cost is incurred by such duplicadon. It
should be poted that the use of attributes on eoumeration types with user-specified encodings is costly at
runtime.

® Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the Surresponding position value of the enumeration type.

5.4.4. Record Representation Clauses
The alignment clause of record representation clanses (LRM 13.4) is observed.

Static objects may be aligned at powers of 2. The specified alignment becomes the minimum alignment of
the record type, unless the minimum alignment of the record forced by the component allocation and the
minimum alignment requirements of the components is already more stringent than the specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinabie size. Not all components need to be present. Component clauses for componeats of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype, but not necessarily the component type. The location specified must be compatible with any alignment
coastraints of the component type: an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, the
discriminants and components without component clauses are allocated after those with component clauses; no
attempt is made to utilize gaps left by the user-provided allocation.

5.4.5. Address clauses
Address clauses (LRM [3.5) are supported with the following resmictions:

¢ When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
® Address clauses applied to local packages are not supported by Tartan Ada. Address clsuses applied to
library packages are prohibited by the syntax; therefore, an address clause can be applied to a package only
if it is a body stub.
® Address clauses applied to subprograms and tasks are implemented according to the LRM rules. Whean
applied to an entry, the specified value identifies an interrupt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the eatry and the interrupt. A specified address must be an Ada
static expression.
Note: Creating an overlay of two objects by means of sddress clauses is possible with Tartan Ada.
However, such overiays (which are considered erroneous by the Ada LRM 13.5(8)) will not be
recognized by the compiler as an aliasing that prevents certain optimizations. Therefore, problems
may arise if reading and writing of the two overlaid objects are intermingled. For example, if
variables A and B are overlaid by means of address clauses, the Ada code sequence:

A := 5;

B := 7;

if A = 5 then raise SURPRISE; end if;
may well raise the exception SURPRISE, since the compiler believes the value of A to be § even after
the assignment to B.

COMPILATION SYSTEM MANUAL

5.4.6. Pragma PACK
Pragma ?ACK (LRM 13.1) is supported. For details. refer to the following sections.

5.4.6.1. Pragma PACK for Arrays

If pragma PACK is applied t0 an array, the densest possible representation is chosen. For details of packing,
refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If. in addition, a length clause is applied to the array type, the pragma has no effect, since such a length clause
aiready uniquely determines the array packing method.

If a length clause is applied to the component type, the array is packed densely, observing the component’s
length clause. Note that the component length clause may have the effect of preventing the compiler from
packing as densely as would be the default if pragma PACKX is applied where there was no length clause given for
the component type.

5.4.6.2. The Predefined Type STRING

Package STANDARD applies pragma PACK to the type STRING. However, because type character is deter-
mined to be 32 bits on the C40, this application resuits in one character per word.

5.4.6.3. Pragma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
thenmanddxgnmemconsmmofthcmdmdmleompmtypa Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nare. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It shouid be noted that the default type mapping for records maps componeats of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but aot all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types

Certain alignment properties of values of certain types are enfarced by the type mapping rules. Any represen-
tation specification that cannot be satisfied within these const.ints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically,
resictions exist that make extraction of values that cross certain address boundaries very expensive, especially
in contexts involving array indexing. Permitting data layouws that require such complicated exmractions may
impact code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

¢ No object of scalar type (including components or subcomponents of a composite type) may span 8

target-dependent address boundary that would mandate an extraction of the object’s value to be performed
by two or more extractions.

5-10

APPENDIX F TO MIL-STD-1815A

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

The only impiementation-dependent components ailocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the LRM describes a syntax for associating interrupts with task entries. Tartan Ada
implements the address clause

for toentry use at intID;

by associating the interrupt specified by int ID with the toentry entry of the task containing this address
clause. The interpretation of int ID is both machine and compiler dependent.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Tartan supports UNCHECKED _CONVERSION as documented in Section 13.10 of the LRM. The sizes need
not be the same. nor need they be known at compile time. If the value in the source is wider than that in the
target, the source value will be truncated. If narrower, it will be zero-extended. Calls on instantiations of
UNCHECKED_CONVERS ION are made inline automaticaily.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES

Tartan Ada supplies the predefined input/output packages DIRECT_I0, SEQUENTIAL_IO, TEXT_IO, and
LOW_LEVEL_IO as required by LRM Chapter 14. However, since the C40 chip is used in embedded applica-
tions lacking both standard I/O devices and file systems, the functionality of DIRECT_IO, SEQUENTIAL_IO,
and TEXT_IO is limited.

DIRECT_IO and SEQUENTIAL_IO raise USE_ERROR if a file open or file access is auempted. TEXT_IO
is supported to CURRENT_OUTPUT and from CURRENT_INPUT. A routine that takes expiicit file names raises
USE_ERROR.

COMPUILATION SYSTEM MANUAL

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Program
Any Ada library subprogram unit may be designated the main program for purposes of linking (using the Ada
librarian's L INK subcommand) provided that the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for termination as other tasks [described in
LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatives in selective wait statements in library tasks are therefore soqongly recommended.

5.9.2. Implementation of Generic Units

All insuantations of generic units, except the predefined gemeric UNCHECKED_CCNVERSICN and
UNCHECXED_DEALLOCATION subprograms, are implemented by code duplications. No atuempt at sharing
code by muitiple instantiations is made in this release of Tartan Ada.

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided

as part of the same compilation. A recompilation of the body of a generic unit will cause any uniis that
instantiated this generic unit to become obsolete.

5.9.3. Implementation-Defined Characteristics in Package STANDARD

The implementation-dependent characteristics for C40 in package St andard (Annex C) are:
package STANDARD is

type INTEGER is range -2_147_483_648 .. 2_147_483_647;
type FLOAT is digits 6 range -16#0° T1000_O00#E+33™.. 1640 .FFFF_FF#E+32;

type LONG_FLOAT is digits 9 range -15#0.1000_000_O#E+33 ..
T6#0.FFFF_FFFF_O#E+32 ;

type DURATICN is defta 0.0001 range -86400.0 .. 36400.C; X
-— DURATION’SMALL = 2#1.0#E-14 (that is, §.103516E~3 sec)

end STANDARD;

5.9.4. Auributes of Type DURATION
The type DURATION is defined with the following characteristics:

Attribute Value
DURATION’DELTA 0.0001 sec
DURATION’ SMALL | 6.103516E™3 sec
DURATION‘FIRST| -86400.0 sec
DURATION’ LAST 86400.0 sec

s-12

5.9.5. Values of Integer Auributes
Tartan Ada supports the predefined integer type INTEGEZR. The range bounds of the predefined type

INTEGER are:

Attribute

Value

INTEGER’ FIRST

-2**31

INTEGER’ LAST

2**31-1

The range bounds for subtypes declared in package TEXT_IO are:

APPENDIX F TO MIL-STD-i815A

Attribute Value
COUNT’ FIRST 0
COUNT’ LAST INTEGER’ LAST - 1

POSITIVE_COUNT’FIRST

1

POSITIVE_COUNT’LAST

INTEGER’ LAST - |

FIELD’'FIRST

0

| FIELD’ LAST

240

The range bounds for subtypes declared in package DIRECT_IO are:

Attribute Value
COUNT'FIRST 0
COUNT’ LAST INTEGER’ LAST

POSITIVE_COUNT’FIRST

1

POSITIVE_COUNT’ LAST

COUNT’ LAST

COMPILATION SYSTEM MANUAL

5.9.6. Values of Floating-Point Attributes
Tartan Ada supports the predefined floating-poiat types FZCAT and ZCNG_TICAT.

In addition. a set of standard library packages provides support for a non-Ada **double precision’ 16-decimal
digit float rype, ZXTENDED_7LOAT. Please refer to Section 8.2 for details. This rype could not be supported as
a predefined type due to Ada’s *‘4*B’’ rule (LRM 3.5.7.7) that relates ‘' CIGITS to the range of the machine
exponent. Under this rule, the EXTENDED_FLCAT is indistinguishable from the ZONG_FLCAT type.

Attribute Value for SLOAT

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000_OOWE-4 (approximately 9.53674E-07)

SMALL 16#0.8000_00#E-2! (approximately 2.58494E-26)

LARGE I6#0FFF.7_F8#E+21 (approximately |1.93428E+25)

SAFE_EMAX 125

SAFE_SMALL 16#0.4000_0OME-31 (approximately 1.17549E-38)

SAFE_LARGE 16#0.1FFF_FF#E+32 (approximately 4.25353E+37)

FIRST -16#0.1000_00#E+33 (approximately -3.40282E+38)

LAST 16#0 FFFF_FF#E+32 (approximately 3.40282E+38)
| MACHINE_RADIX 2

MACHINE_MANTISSA 24

MACHINE_EMAX 128

MACHINE_EMIN -125

MACHINE ROUNDS FALSE

MACHINE OVERFLOWS | TRUE

APPENDIX F TO MIL-STD-1815A

‘l'he Ada auributes are ipsufficient for completely describing floating point numbers, especially with non-
symmetric machine exponent and machine mantissa ranges. For example. MACHINE IMAX and
MACHINE_ZMIN are defined such that both the fuil mantissa range and the neganve of any value must be
supported in the floating format. This fails to document other, less resmictive exponent limits.

Additional (missing) properties are provided in the table below. The table is informational; there are no
additional aributes corresponding to these values supplied by Tartan Ada. In the table, POS_MACHINE_EMAX,
NEG_MACHINE_EMAX, POS_MACHINE_EMIN, NEG_MACHINE_EMIN are defined as the | positive and nega-
tve ﬂomngvuue extremes fonhemachmeexponcmsuchthanhemnmnmmgeusnusupponed (but no
guarantees are made that the negative of any value is still representable). POS_MACHINE_VERY_ EMAX,
NEG_MACHINE_VERY_EMAX, POS_MACHINE_VERY_ EMIN, NBG_MACHINE_VERV EMIN are defined as
the positive and negative floating value extremes for the machine exponent such that at least one floating value is
stll representable. MOST_POSITIVE, LEAST_POSITIVE, MOST_NEGATIVE, and JEAST_NEGATIVE are
the absolute exwemes possible in the floating format.

Property Value for FLOAT
POS_MACHINE_EMAX 128
NEG_MACHINE_EMAX 128
POS_MACHINE_EMIN -126
NEG_MACHINE_EMIN -125

POS_MACHINE_VERY_EMAX | 128
NEG_MACHINE_VERY_EMAX | 129
POS_MACHINE_VERY_EMIN | -126
NEG_MACHINE_VERY_EMIN |-126

MOST_POSITIVE 16#0 FFFF_FF#E+32 (= ' LAST, approx 3.40282E+38)
LEAST_POSITIVE 16#2.0#E-32 (approx 5.87747E-39)
MOST_NEGATIVE -16#0.1000_0O#E+33 (= ’ F IRST, approx -3.40282E+38)

LEAST_NEGATIVE -16#2.0000_01#E-32 (approx -5.87747E-39)

COMPILATION SYSTEM MANUAL

Attribute ! Value for _CNG_TLIAT

DISITS 9 |
MANTISSA 31 |
EMAX 124 |
EPSILC 16#0.4000_0000_OWE-7 (approximately 9.3132257SE-10)
SMALL 16#0.8000_0000_O¥E-31 (approximately 2.35098870E-38)
LARGE 16#0 FFFF_FFFE_OWE+31 (approximately 2.12676479E+37) |
SAFE_EMAX 125 |
SAFE_SMALL 16#0.4000_0000_OWE-31 (approximately {.175494351E-38) |
SAFE_LARGE L6#0.LFFF_FFFF_C#E+32 (approximately 4.253529587E+37) |
FIRST -16#0.1000_0000_O#E+33 (approximately -3.40282367E+38) |
ZAST 16#0 FFFF_FFFF_OWE+32 (approximately 3.40282367E+38) |

MACHINE_RADIX 2
MACHINE_MANTISSA |32
MACHINE_EMAX 128
MACHINE_EMIN -125
MACHINE_ROUNDS FALSE
MACHINE_OVERFLOWS | TRUE

APPENDIX F TO MIL-STD-1815A

The Ada auributes are insufficient for completely describing floating point numbers, especially with non-
symmewic machine exponent and machine mantissa ranges. For example, MACHINE ZMAX and
MACHINE_EMIN are defined such that both the full mantissa range and the negative of any value must be
supported in the floating format. This fails to document other, less restrictive exponent limis.

Additional (missing) properties are provided in the table below. The table is informational; there are no
additional atributes corresponding to these values supplied by Tartan Ada. In the table, POS_MACHINE EMAX,
NEG_MACHINE_EMAX, POS_MACHINE_EMIN, NEG_MACHINE_EMIN are defined as the positive and nega-
tive floating value extremes for the machine exponent such that the full mantissa range is still supported (but no
guarantees are made that the negatve of any value is still representable). POS_MACHINE_VERY_ EMAX,
NEG_MACHINE_VERY_EMAX, POS_MACHINE_VERY_EMIN, NEG_MACHINE V‘ERY EMIN are defined as
the positve and negative floaung value extremes for the machine exponent such that at least one floating value is
still representable. MOST_POSITIVE, LEAST_POSITIVE, MOST_NEGATIVE, and LEAST_NEGATIVE are
the absolute extremes possibie in the floating format.

Property Value for LONG_FLOAT
POS_MACHINE_EMAX 128
NEG_MACHINE_EMAX 128
POS_MACHINE_EMIN -126
NEG_MACHINE_EMIN -125

POS_MACHINE_VERY_EMAX | 128

NEG_MACHINE_VERY EMAX | 129

POS_MACHINE_VERY_EMIN | -126

NEG_MACHINE_VERY_EMIN |-126 .

MOST_POSITIVE 16#0 FFFF_FFFF#E+32 (= ’ LAST, approx 3.40282367E+38)

LEAST_POSITIVE 16#2.0#E-32 (approx 5.87747175E-39)
MOST_NEGATIVE -16#0.1000_0000#E+33 (= * FIRST, approx -3.40282367E+38)

LEAST_NEGATIVE -16#2.0000_0001#E-32 (approx -5.87747176E-39)

COMPILATION SYSTEM MANUAL

5.10. SUPPORT FOR PACKAGE MACHINE_CODE

Package MACHINE_CCDE provides the user with an interface through which to request the generation of any
instruction that is available on the C40. The implementation of package MACHINE CCDE is similar to that
described in Section 13.8 of the Ada LRM., with several added features. Please refer 1o Appendix B for the
package MACHINE_CCDE specification.

5.10.1. Basic Information

As required by LRM. Section 13.8, a routine which contains machine code inserts may not bave any other
kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

5.102. Instructions

A machine code insert has the form TYPE_MARK’ RECORD_AGGREGATE, where the type must be one of the
records defined in package MACHINE_CODE. Package MACHINE_CCOE defines seven types of records. Each

basanopcodeandzemtouxopennds. Merecordsmadequatcformeexpmsonofanmsmom
provided by the C40.

5.103. Operands and Address Modes

Anopenndeonmsofareco:daggteptewhmhholdsallthemfomnonwspeczfyutothempﬂer All
operands have an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the instruction being generated.

Each operand in a machine code insert must bave an Address_Mode_Name. The address modes provided in
package MACHINE_CCDE provide access to all address modes supported by the C40.

In addition, psckage MACHINE_CODE supplies the address modes SYMBOLIC_ADDRESS and
SYMBOLIC_VALUE, which allow the user to refer to Ada objects by specifying OBJECT’ ADDRESS as the
value for the operand. Any Ada object which has the ADDRESS attribute may be used in a symboiic operand.
SYMBOLIC_ADDRESS should be used when the operand is a true address (e.g.. a branch target).
SYMBOLIC_VALUE should be used when the operand is actually a value (i.e., one of the source operands of an
ADDI instruction).

When an Ada object is used as a source operand in an insguction (that is, one from which a value is read), the
compiler will generate code which fetwches the value of the Ada object. When an Ada object is used as the
destination operand of an instruction, the compiler will generate code which uses the address of the Ada object as
the destination of the instruction.

5.10.4. Examples

The implementation of package MACHINE _CODE makes it possible tc specify both simple machine code
inserts such as
Zwo_Opnds’ (LDI, (Imm, 5), (Reg, RO))
and more complex inserts such as
Three_Opnds’ (ADDI3,
(Imm, 10),

(Symbolic_Value, Array Var(X, Y, 27)’ADDRESS),
(Symbolic_Address, Parameter_ 1’ADDRESS))

In the first example, the compiler will emit the instruction LDI S, RO. In the second example, the compiler
may first emit an instruction to loed the immediate value 10 into a register (depeading on whether the compiler
decides to make the type!l or type2 three operand instruction), next emit whatever instructions are needed to form
the address of ARRAY VAR (X, Y, 27) and then emit the ADDI3 instruction. If PARAMETER_1 is oot found
in a register, the compiler will put the result of the addition in a temporary register and then store it 0
PARAMETER_1’ADDRESS. Note that the destination operand of the ADDI3 insoruction is given as &

$-18

APPENDIX F TO MIL-STD-i815A

SYMBOLIC_ADDRESS. This holds true for all destination operands that are not also read as source operands by
the instrucion. SYMBOLIC_VALUE should be used if the operand is both a source and a destination as in the
second operand of the ADDI instruction. The various error checks specified in the LRM will be performed on all
compiler-generated code unless they are suppressed by the user (either through pragma SUPPRESS. or through
command qualifiers).

5.10.5. Incorrect Operands

Under some circumstances, the compiler attempts to carrect incorrect operands. Three modes of operation
are supplied for package MACHINE CODE to determine whether corrections are auempted and how much
information about the necessary corrections is provided to the user. These modes of operation are
/FIXUP=NONE, /FIXUP=WARN, and /F IXUP=QUIET./F IXUP=QUIET is the default.

In /FIXUP=NONE mode, the specification of incorrect operands for an instruction is considered to be a fatal
error. In this mode, the compiler will not generate any extra instructions to help you to make a machine code
insertion. Note that it is still legal to use * ADDRESS constructs as long as the object which is used meets the
requirements of the instruction.

In /FIXUP=QUIET mode, the compiler will do its best to correct the machine code if incorrect operands are
specified. For example, although it is illegal to use a memory address as the destination of an ADD I instruction,
the compiler will accept it and try to generate correct code. In this case, the compiler will load into a register the
value found at the memory address indicated, use this register in the ADDI instruction, and then store from that
register back to the desired memory location.

Two_Opnds’ (ADDI, (Imm, 10), (ARI, ARl))

will produce a code sequence resembling

oI *AR1l, RO
ALDI 10, RO
STI RO, *ARl

The next example illustrates the correction required when the displacement is out of range for the first
operand of an ADDI 3 instruction. The displacement is first loaded into one of the index registers.

Three_Opnds’ (ADDI3, (IPDA, AR3, 32), (Reg, R0}, (Reg, Rl))
will produce a code sequence resembling

LDI 32, IRO
ADDI3 AR3(IRO), RO, R1

In /FIXUP=WARN mode, the compiler will also do its best to correct any incorrect operands for an instruc-
tion. However, a waming message is issued stating that the machine code insert required additional machine
instructions to make its operands legal.

5.10.6. Assumptions Made in Correcting Operands

When compiling in /FIXUP=QUIET or /FIXUP=WARN modes, the compiler agempts to emit additional
code to move ‘‘the right bits’’ from an incorrect operand to a register or place in memory which is a legal
operand for the requested instruction. The compiler makes certain basic sssumptions when performing these
corrections. This section explains the assumptions made by the compiler and their implications for the generated
code. Note that if you want a correction which is different from that performed by the compiler, you mmst make
explicit machine code insertions to perform it.

For source operands:

¢ SYMBOLIC_ADDRESS means that the address specified by the ' ADDRESS expression is used as the
source bits. When the Ada object specified by the ' ADDRESS insgruction is bound to a register, it will
cause & compile-time error message because it is not possibie to *‘taks the address’’ of a register.

COMPILATION SYSTEM MANUAL

¢ SYMBOLIC_VALUE means that the value found at the address specified by the ‘ AZCRESS expression will
be used as the source bits. An Ada object which is bound to a register is correct here, because the contents
of a register can be expressed on the C40.

® DCREL indicates that the address of the label will be used as the source bits.

® Any other non-register means that the value found at the address specified by the operand will be used as
the source bits.

For destination operands:

® SYMBOLIC_ADDRESS means that the desired destination for the operation is the address specified by the
*ADDRESS expression. An Ada object which is bound to a register is correct here; a register is a legal
destination on the C40.

® SYMBOLIC_VALUE means that the desired destination for the operadons is found by fetching 32 bits from
the address specified by the ' ADDRESS expression, and storing the resuit to the address represented by the
fewched bits. This is equivalent to applying one exma indirection to the address used in the
SYMBOLIC_ADDRESS case.

¢ All other operands are interpreted as directly specifying the destination for the operation.

5.10.7. Register Usage

Since the compiler may need to allocate registers as temporary storage in machine code routines, there are
some restrictions placed on your register usage. The compiler will automaticaily free all registers which are
volatile across a call for your use (RO..R3, bits 32-39 of R4..RS, bits 0-7 of R6..R7, bits 32-39 of R8, R9 .. R11,
ARO0..AR2, IR0, IR1. BK, ST, DIE. IIE, ITF, RS, RC, RE).

If you reference any other register, the compiler will reserve it for your use until the end of the machine code
routne. The compiler will nor save the register automatically if this routine is inline expanded. This means that
the first reference 10 a register which is not volatile across calls should be an instruction which saves its value in a
safe place. The value of the register should be restored at the end of the machine code routine. This rule will
help easure correct operation of your machine code insert even if it is inline expanded in another routine.
However, the compiler will save the register sutomatically in the prolog code for the routine and restore it in the
epilog code for the routine if the routine is not inline expanded.

As a result of freeing all volatile registers for the user, any parameters which were passed in registers will be
moved 0 either a non-volatile register or to memory. References to PARAMETER’ ADDRESS in a machine code
insert will then produce code that uses this register or memory location. This means that there is a possibility of
invalidating the value of soms ’ ADDRESS expression if the non-volatile register to which it is bound is used as a
destination in some later machine code insert. In this case, mysuuequemmfmmmthe'ADDREss
expression will cause the compiler to issue a waming message.

The compiler may need several registers to generate code for operand corrections in machine code inserts. If

you use ail the registers, corrections will not be possible. In general, when more registers are available to the
compiler, it is able t0 generate better code.

5.10.8. Data Directives

Two speciai insgructions are included in package MACHINE_CODE to allow the user to place daa into the
code stream. These two instructions are DATA32 and DATA64. Each of these instructions can have 1 to 6

operands.
DATA32 is used to place 32-bit data into the code stream. The value of an integer or 32-bit float, and the

address of a label are the legal operands (i.e., operands whose address mode is either IMM, FLOATIMM, or
SYMBOLIC_ADDRESS of an Ada label).

520

APPENDIX F TO MIL-STD-1815A

<< L1 >>

Three_Opnds’ (DATASZ, (Symbolic_Address, L2’'Address’,
(Symbolic_Address, L3’Adaress),
(Symbolic_Address, L4’Address));

<< L2 >>

<< L3 >>

<< L4 >>

will produce a code sequence like

Ll: .word L2
.word L3
.word L4

DATA64 is used to place a 64-bit piece of data into the code stream. The only legal operand is a floating
literal (i.c., the operand whose address mode is FLOAT IMM).

5.10.9. Inline Expansion

Routines which contain machine code inserts may be inline expanded into the bodies of other routines. This
may happen under user control through the use of pragma INLINE, or with optimizations for standard and
limeoptimization levels when the compiler selects that optimization as an appropriate action for the given
simation. The compiler will weat the machine code insert as if it were a call. Volatile registers will be saved and
restored around it and similar optimizing steps will be taken.

5.10.10. Move Macro Instructions

The C40 instruction set contains no single all-purpose move instruction, but instead supplies the set
(LDI,LDF,STI,STF}. Each of these instructions defines a very specific kind of move with restrictions on
data types and source/destination locatons (memory vs. register). Unfortunately, when constructing data moves
using package MACHINE_CODE, it is impossible to predict if an Ada object will be in memory or in a register,
especially in the presence of inlining. For this reason, three "macro” instructions are supplied:

Name Meaning
MOVI | Move a 32-bit integer from the first
operand to the second, emitting some

combination of LDI and STI's to do so.
MOVF32 | Move s 32-bit float from the first

operand to the second, emitting some
combination of LDF and STF's to do so. °
MOVF40 { Move a 40-bit float from the first

operand to the second, emitting some
combination of LDF/LDI and STF/STI's to
do so.

5.10.11. Using LAJ instructions

The code generated for a routine written in Ada has two eatry points. One of the entry points is used by
CALL instructions. The other entry point is used by LAJ inscuctions. The example below shows the two code
sequences that the compiler can generate for a given routine:

COMPILATION SYSTEM MANUAL

_mviunc:

_nyiuncSlal: ... ; LAJ entry

Uy}
O
v
V)
~
(¥
Y
£
X
b
3
1
$
<

Nw = =2 ERPS

30 RI1

_myfuncSLAJ: PUSH R11l ; LAJ entry
_myfunc: cen ;7 CALL entry

RETSU

Two groups of LAJ inswructions are provided in package MACHINE CODE. The special group of LAJ
instructions that has the _Ada suffix should be used to call routines that are written in Ada. Using one of these
special LAJ instuctions tells the compiler that the target of this cail should be the LAJ entry of the routine and
oot the CALL entry of the routine. If an LAJ without the _Ada suffix is used. the compiler will use the CALL
entry of the routine as the target. The non _Ada version should be used to cail routines that are not written in
Ada (i.c.. routines that are written in assembly. C, ewc.).

Calling the Ada routine
One_Opnds’ (LAJ_Ada, (Symbolic_Address, My Ada_runction’Address);
will produce
LAJ _myadafunc$SLAJ
where the compiler uses the LAJ entry of My_Ada_Function as the target.
Calling the Assembly routine
Cne_Opnds’ (LAJ, (Symbolic_Address, My Assembly Function’Address);
will produce
LAJ _myassemblyfunc l
and not
LAJ _myassemblyfunc$LAJ
because the CALL entry of MY _ASSEMBLY_FUNCTION is used for the non _Ada LAJs.
If the source operand of a LAJCOND_ADA instruction is a register then the compiler cannot generate the LAJ
entry for the routine. An error message is issued in this case. An Ada routine can be called by LAJCOND

insguctions whose source operand is a register if the non _Ada version is used. The following example shows
how Ada routines can be called by LAJCOND instructions that have a register as the source operand.

$-22

APPENDIX F TO MIL-STD-1815A

Two_Clpnds’ (LDIU, (Symbolic_Address, My_Aada_Tuncticn’iccressi,
(Reg, ARCY);
One_Cpnds’ (LAJU, (Reg, AR0)); -- use the non _Ada version
Two_Opndas’ (LDIU, (Imm, 1)}, {(Reg, R0).);
Two_Opnds’ (LDIU, (Imm, 1), (Reg, R1));
One_Cpnds’ (PUSH, (Reg, R11l)); -- return address is pushec on stack

will produce

LDIU @DEFl, ARO
LAJU ARO

LDIU 1, RO
LDIU 1, Rl
PUSH R1l1

DEFl: .word _myadafunc

In the above example. the target of the LAJU will be the CALL entry for MY_ADA FUNCTION and not the LAJ
entry. Since the target of the LAJU is the CALL entry, memmmaddrmmustbepnshedomozhemnnmesuck
to simulate the semantics of 4 CALL instruction. This is done by making the PUSH R11 fill the last delay slot of
the LAJU.

5.10.12. Unsafe Assumptions

There are a variety of assumptions which should nor bé made when writing machine code inserts. Violation
of these assumptions may result in the generation of code which does not assembie or which may not function
correctly.

* The compiler will not generate call site code for you if you emit a CALL or LAJ instruction. You must
save and restore any volatile registers which currently have values in them, etc. If the routine you call has
out parameters, a large function return result, or an unconstrained result, it is your responsibility to emit
the necessary instructions to deal with these constructs as the compiler expects. In other words, when you
emit a CALL or LAJ, you must follow the linkage conventions of the routine you are calling. For further
details on call site code, see Sections 6.4, 65 and 6.6.

¢ Do not assume that the ' ADDRESS on SYMBOLIC_ADDRESS or SYMBOLIC_VALUE operands means
that you are getting an ADDRESS to operate on. The Address- or Value-ness of an operand is determined
by your choice of SYMBOLIC_ADDRESS or SYMBOLIC_VALUE. This means that to add the contents of
X to ARO, you should write
Two_Opnds’ (ADDI, (Symbolic_Value, X’ADDRESS),
(Reg, ARO))
but to add the address of X to ARO, you should write

Two_Opnds’ (ADDI, (Symbolic_Address, X’ADDRESS),
(Reg, AR0));

5.10.13. Limitations
The current implementation of the compiler is unable to fully support automatic correction of certain kinds of
operands. In particular, the compiler assumes that the size of a data object is the same as the number of bits
which is operated on by the instruction chosen in the machine code insert. This means that the insert
Two_Opnds’ (ADDF, (Symbolic Value, Long_Float_Variable’ADDRESS),
(Reg, RO))

will not generate correct code when LONG_FLOAT_VARIABLE is bound to memory. The compiler will assume
that LONG_FLOAT VARIABLEm32bm.whmxnﬁctuusundm64bmofory If, on the other hand,

COMPILATION SYSTEM MANUAL

ZCONG_TLCAT_VARIABLE was bound to an extended-precision register. the insertion will function properly, as
no correction is needed.

Note that the use of X’ ADCRESS in a machine code insert does not guarantee that X will be bound to
memory. This is a result of the use of ADDRESS to provide a ‘‘typeless’’ method for naming Ada objects in
machine code inserts. For example, it is legal to say (SYMBOLIC_VALUE, X’"ADDRESS) in an insert even
when X is found in a register.

5.10.14. Example

with machine_code; use machine_code;
procedure mach_gxample is

type ary_type is array(l..4) of integer;

a: ary_ctype := (1,2,3,4);
b: integer;

procedure case_statement (a: in integer; b: in out integer) is

begin

-- implements case a is

- when 1 => b := 0;

- when 2 => b := b + 1;
-— when 3 => b := b * b;

- when others => null

- end case;
Three_Opnds’ (SUBI3, (Imm, 1), (Symbolic_Value, a'Address), (Reg, IRO));
Two_Opnds’ (LDI, (Symbolic_Address, Ll’Address), (Reg, Ar0));

Two_Opnds’ (LDI, (IPrIA, Ar0, IR0), (Reg, Arl)); [
One_Opnds’ (case_jump, (Reg, Arl));
<< L1 >>

Three_Opnds’ (DATA32, (Symbolic_Address, L2’Acddress),
- (Symbolic_Address, L3’Address),
{Symbolic_Address, L4i’Address));
<< L2 >>
Two_Opnds’ (LDI, (Imm, 0), (Symbolic_Address, b’Address));
One_Opnds’ (BU, (PcRel, L35'Address));
<< L3 >>
Two_Opnds’ (ADDI, (Imm, 1), (Symbolic_Value, b’Address));
One_Opnds’ (BU, (PcRel, L3’Address));
<< L4 >>
Two_Opnds’ (MPYI, (Symbolic_Value, b’Address), (Symbolic_Value, b’Address));
<< L§ >>
Zero_Opnds’ (NOP); -- s.nce label can’t be last statement in procedure
end case_statement;

pragma INLINE (case_statement);
begin
if a(l) >= 0 then
case_statement (a(3), b); =-- will be inline expanded
end if;

end mach_example;

Assembly code output:
.Global mach_example

.global ACOmchxmpl0009

.global AQOOmchxmplO009SLAT

.text
AOOmchxmpl0009: 20P R11
AOOmchxmplQO009SLAJ: ADDI

PUSH AR3

LDA SP,AR3

PUSH AR3

ADDI 4,5?

PUSH RS

PUSH RS

LDA @DEF1,ARO

STI ARQ, *+AR3 (1)

LDA dDEF2,ARD

ADDI3 2,AR3,AR1

LDIU *ARO++ (1) ,R1

RPTS 2

LDI *ARO++ (1) ,R1

|]1 STI RI1,*ARl++(1)

STI R1, *ARl

CMPI3 0, *+AR3(2)

BLT L22

LDIU *+AR3 (4) ,RO

LDIU RS,R8

LDIU RO, RS

SUBI3 1,RS5, IR0

LDI @DEF3,ARO

LDI *+AR0 (IR0) ,AR]

BU ARl
L23:

L1l4:
.word LiS
; line 23

.word 116

.word L7
L1S: LDI 0,R8

BU L18
Ll6: ADDI 1,R8

BU L8
L17: MPYI R8,R8
L18: NOP

LDIU R8,RS
L22:

; line 40

LDIU *+AR3 (6) ,RS

LDIU *+AR3(7),R8

BUD R11

LDA AR3, SP

POP AR3

SUBI 1,s8P

; Total words

DEF3:
DEF1l:

.text
.sect
.word
.word

1,sp

e %e Na We we we W

line

line
line
line
line
line
line
line

.
’

.
’

-
’

.

14
.
’

21

27
28
30
31
i3
35

line 43
line 44
line 18

line 19
line 20

of code in the above routine = 4]

;assigned to "DEFALT" data page

"0:DEFALT"
Ll4
L22

APPENDIX F TO MIL-STD-1815A

5-25

COMPILATION SYSTEM MANUAL

casestatementS00:

.sext

casestatement$SO0SLAJ:

; Total

DEFALT:

DEF2:
OEFS:

; Total
; Tstal

BU R1l

words of code in the

.text ;assigned <o
.sect "o:DEFALT"
.text ;assigned to
.sect "o:DEFALT"
.word 0

.text

.text ;assigned to
.sect "0:DEFALT"
.word DEFS

.word 1

.word 2

.word 3

.word 4

words of code = 43
words of data = 7

.end

above routine = 2

"DEFALT" data page

"DEFALT" data page

"OEFALT" data page

-

APPENDIX F TO MIL-STD-1815A

5.11. INLINE GUIDELINES

The following discussion on inlining is based on the next two examples. From these sampie programs.
general rules, procedures, and cautions are illustrated.

Consider a package with a subprogram that is to be inlined.
package IN_PACK is
procedure I _WILL_BE I\ILINED,

pragma INLINE (I_ “WIL L_BE_INLINED);
end IN_PACK;

Consider a procedure that makes a call to an inlined subprogram in the package.
with IN_PACK;
procedure USES_INLINED_SUB? is
begin
I_WILL BE_INLINED;
end;

After the package specificaion for IN_PACK bas been compiled, it is possible to compile the unit
USES_INLINED_SUBP that makes a call 1o the subprogram I_WILL_3SE_INLINED. However, because the
body of the subprogram is not yet available, the generated code will not have an inlined version of the sub-
program. The generated code will use an out of line call for I_WILL_SE_INLINED. The compiler will issue
wamning message #2429 that the call was not inlined when USES_INLINED_SUBP was compiled.

If IN_PACK is used across libraries, it can be exported as part of a specification library after having compiled °
the package specification. Note that if only the specification is exported, there will be no inlined calls o *
IN_PACK in all units within libraries that import IN_PACK . If only the specification is exported. all calls that
appear in other libraries will be out of line calls. The compiler will issue warning message #6601 to indicate the
call was not inlined.

There is no waming at link-time that subprograms have not been inlined.

If the body for package IN_PACK has been compiled before the call to I_WILL_BE_INLINED is compiled.
the compiler will inline the subprogram. In the example above, if the body of IN _PACX has been compiled
before USES_INLINED_SUBP, the call will be inlined whea USES_INLINED_SUBP is compiled.

Having an inlined call to a subprogram makes a unit dependent on the unit that contains the body of the
subprogram. In the example, once USES_INLINED_SUBP has been compiled with an inlined call to
I_WILL_BE_INLINED, the umit USES_INLINED_SUBP will have a dependency on the package body
IN_PACK. Thus, if the body for package body IN_PACK is recompiled, USES_INLINED_SUBP will become
obsolete, and must be recompiled before it can be linked.

nupomblctoexpmtbbodyfaahlnrymt. If the body for package IN_PACK is added to the
specification library using the Ada librarian subcommand EXPORT LIBRARY, other libraries that impor pack-
age IN_PACK will be able to compile inlined calls scross library units.

At optimization levels lower than the default, the compiler will not inline calls, even when pragma INLINE
has been used and the body of the subprogram is in the library prior to the unit that makes the call. Lower
optimization levels avoid any changes in fiow of the code that causes movement of code sequences, as happens in
a pragma INLINE. If the compiler is running at a low optimization level, the user will not be warned that
inlining is not happening.

See Section 7.12 for a method to control inlining.

